Goto

Collaborating Authors

 Personal Products


50 of the best Memorial Day deals and sales already live: Mattresses, headphones, outdoor furniture, and more

Mashable

Somehow, we've already reached the unofficial start of summer: the Memorial Day 2025 deals are here. Though Memorial Day isn't technically until May 26, plenty of brands kicked off their sales early. Leading the way are mattress deals, followed by home and kitchen deals. Below, we've gathered all the best deals so far ahead of Memorial Day, and will be adding to this list as more deals go live.



The Tree Autoencoder Model, with Application to Hierarchical Data Visualization

Neural Information Processing Systems

We propose a new model for dimensionality reduction, the PCA tree, which works like a regular autoencoder, having explicit projection and reconstruction mappings. The projection is effected by a sparse oblique tree, having hard, hyperplane splits using few features and linear leaves. The reconstruction mapping is a set of local linear mappings. Thus, rather than producing a global map as in t-SNE and other methods, which often leads to distortions, it produces a hierarchical set of local PCAs. The use of a sparse oblique tree and of PCA in its leaves makes the overall model interpretable and very fast to project or reconstruct new points. Joint optimization of all the parameters in the tree is a nonconvex nondifferentiable problem. We propose an algorithm that is guaranteed to decrease the error monotonically and which scales to large datasets without any approximation. In experiments, we show PCA trees are able to identify a wealth of low-dimensional and cluster structure in image and document datasets.


HellaSwag-Pro: A Large-Scale Bilingual Benchmark for Evaluating the Robustness of LLMs in Commonsense Reasoning

arXiv.org Artificial Intelligence

Large language models (LLMs) have shown remarkable capabilities in commonsense reasoning; however, some variations in questions can trigger incorrect responses. Do these models truly understand commonsense knowledge, or just memorize expression patterns? To investigate this question, we present the first extensive robustness evaluation of LLMs in commonsense reasoning. We introduce HellaSwag-Pro, a large-scale bilingual benchmark consisting of 11,200 cases, by designing and compiling seven types of question variants. To construct this benchmark, we propose a two-stage method to develop Chinese HellaSwag, a finely annotated dataset comprising 12,000 instances across 56 categories. We conduct extensive experiments on 41 representative LLMs, revealing that these LLMs are far from robust in commonsense reasoning. Furthermore, this robustness varies depending on the language in which the LLM is tested. This work establishes a high-quality evaluation benchmark, with extensive experiments offering valuable insights to the community in commonsense reasoning for LLMs.


ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models

Neural Information Processing Systems

We collect a large real-world test set, ObjectNet, for object recognition with controls where object backgrounds, rotations, and imaging viewpoints are random. Most scientific experiments have controls, confounds which are removed from the data, to ensure that subjects cannot perform a task by exploiting trivial correlations in the data. Historically, large machine learning and computer vision datasets have lacked such controls. This has resulted in models that must be fine-tuned for new datasets and perform better on datasets than in real-world applications. When tested on ObjectNet, object detectors show a 40-45% drop in performance, with respect to their performance on other benchmarks, due to the controls for biases.


Halal or Not: Knowledge Graph Completion for Predicting Cultural Appropriateness of Daily Products

arXiv.org Artificial Intelligence

The growing demand for halal cosmetic products has exposed significant challenges, especially in Muslim-majority countries. Recently, various machine learning-based strategies, e.g., image-based methods, have shown remarkable success in predicting the halal status of cosmetics. However, these methods mainly focus on analyzing the discrete and specific ingredients within separate cosmetics, which ignore the high-order and complex relations between cosmetics and ingredients. To address this problem, we propose a halal cosmetic recommendation framework, namely HaCKG, that leverages a knowledge graph of cosmetics and their ingredients to explicitly model and capture the relationships between cosmetics and their components. By representing cosmetics and ingredients as entities within the knowledge graph, HaCKG effectively learns the high-order and complex relations between entities, offering a robust method for predicting halal status. Specifically, we first construct a cosmetic knowledge graph representing the relations between various cosmetics, ingredients, and their properties. We then propose a pre-trained relational graph attention network model with residual connections to learn the structural relation between entities in the knowledge graph. The pre-trained model is then fine-tuned on downstream cosmetic data to predict halal status. Extensive experiments on the cosmetic dataset over halal prediction tasks demonstrate the superiority of our model over state-of-the-art baselines.


Soft and Compliant Contact-Rich Hair Manipulation and Care

arXiv.org Artificial Intelligence

Hair care robots can help address labor shortages in elderly care while enabling those with limited mobility to maintain their hair-related identity. We present MOE-Hair, a soft robot system that performs three hair-care tasks: head patting, finger combing, and hair grasping. The system features a tendon-driven soft robot end-effector (MOE) with a wrist-mounted RGBD camera, leveraging both mechanical compliance for safety and visual force sensing through deformation. In testing with a force-sensorized mannequin head, MOE achieved comparable hair-grasping effectiveness while applying significantly less force than rigid grippers. Our novel force estimation method combines visual deformation data and tendon tensions from actuators to infer applied forces, reducing sensing errors by up to 60.1% and 20.3% compared to actuator current load-only and depth image-only baselines, respectively. A user study with 12 participants demonstrated statistically significant preferences for MOE-Hair over a baseline system in terms of comfort, effectiveness, and appropriate force application. These results demonstrate the unique advantages of soft robots in contact-rich hair-care tasks, while highlighting the importance of precise force control despite the inherent compliance of the system.


5 personal care innovations that lived up to the hype in 2024

Popular Science

Plenty of personal care products--the treatments and gadgets that fill our medicine cabinets, home gyms, and vanities--promise innovation. Companies that craft cosmetics, supplements, fitness tools, and other wellness aids tend to go hard on buzzwords without putting in the research to make something truly new. That doesn't mean there aren't worthwhile, forward-thinking personal care products available, though, and this year brought some notable offerings. From high-tech sleep and activity trackers that make peak performance possible to cutting-edge hair dryers that give your scalp a break from burns, these five beauty and wellness products actually back up their big promises. Be sure to read the full list of the 50 greatest innovations of 2024.)


Simulating Human-like Daily Activities with Desire-driven Autonomy

arXiv.org Artificial Intelligence

Existing task-oriented AI agents often depend on explicit instructions or external rewards, limiting their ability to be driven by intrinsic motivations like humans. In this paper, we present a desire-driven autonomy framework to guide a Large Language Model-based (LLM-based) agent to simulate human-like daily activities. In contrast to previous agents, our Desire-driven Autonomous Agent (D2A) operates on the principle of intrinsic desire, allowing it to propose and select tasks that fulfill its motivational framework autonomously. Inspired by the Theory of Needs, the motivational framework incorporates an understanding of human-like desires, such as the need for social interaction, personal fulfillment, and self-care. Utilizing a desire-driven task generation mechanism, the agent evaluates its current state and takes a sequence of activities aligned with its intrinsic motivations. Through simulations, we demonstrate that our Desire-driven Autonomous Agent (D2A) generates coherent, contextually relevant daily activities while exhibiting variability and adaptability similar to human behavior. A comparative analysis with other LLM-based frameworks demonstrates that our approach significantly enhances the rationality of the simulated activities.


Brush, floss, mouthwash: Dentists reveal what they believe is the correct order

FOX News

Robotic dentistry is becoming a reality. Your dentist may remind you to brush, floss and mouthwash – but what is the "right" order to do it? While all steps of oral hygiene can benefit dental health, Dr. Mike Wei, DDS, of New York City, shared with Fox News Digital that he'd recommend the below order. Starting with floss helps to remove food debris and plaque between the teeth and along the gumline, which a toothbrush "may not reach effectively," according to Wei. Dr. Ellie Phillips (not pictured) recommends using xylitol gum and mints to promote healthy salivary flow.